Evolutionary Algorithms – Development and Application to Hydrological Variables Forecasting
نویسنده
چکیده
A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling. evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Systems with Applications 39, 1354-1361.
منابع مشابه
Optimal Choice of Random Variables in D-ITG Traffic Generating Tool using Evolutionary Algorithms
Impressive development of computer networks has been required precise evaluation of efficiency of these networks for users and especially internet service providers. Considering the extent of these networks, there has been numerous factors affecting their performance and thoroughly investigation of these networks needs evaluation of the effective parameters by using suitable tools. There are se...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملModeling and forecasting US presidential election using learning algorithms
The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...
متن کاملVMLP neural network design using optimization algorithms to predict spider suspend (Case Study: Watershed Dam Kardeh)
One of the most important processes of erosion and sediment transport in streams is the river most complex engineering issues.this process special effects on water quality indices, action suburbs floor and destroyed much damage to the river and also into the development plans Lack of continuity sediment sampling and measurement of many existing stations. due to the low number of hydrometric s...
متن کامل